Hi Adam,
Thanks you for you answer, sorry for my question, it was not very clear indeed.
Please find enclosed the inference.py file within my app folder:
#importation
import os
import shutil
import glob
import re
import numpy as np
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib
import tkinter
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
#------------------------------------------------------------------------------------
def pre_processing(num_classes):
#-----------------------------Repertories
output_directory="./model/1"
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(os.path.abspath(output_directory), "label_map.pbtxt")
#-----------------------------List of the strings that is used to correct labels
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=num_classes, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
return(category_index)
#Turn the image into an array that is compatible with the model
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
#Function definition for inference on a single image
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.compat.v1.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in ['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
#Retourne un tenseur sous forme de dictionnaire
return output_dict
And please find the views.py within my app folder:
from django.http import HttpResponse
from django.shortcuts import render
from django.core.files.storage import FileSystemStorage
from django.contrib.auth.decorators import login_required
from .models import Case
from .inference import *
@login_required
def home(request):
""" dsqq """
return render(request,'analyzis.html')
def predictImage(request):
#Path for the uploaded image
fileObj=request.FILES['filePath']
fs=FileSystemStorage()
filePathName=fs.save(fileObj.name,fileObj)
filePathName=fs.url(filePathName)
#Deep Learning model
#Launch graph
import os
import shutil
import glob
import re
import numpy as np
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import matplotlib
import tkinter
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# Path and variables to frozen detection graph.
output_directory="./model/1"
PATH_TO_CKPT = os.path.join(os.path.abspath(output_directory), "frozen_inference_graph.pb")
num_classes=32
#Load graph
detection_graph = tf.compat.v1.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
#Preprocessing
category_index=pre_processing(num_classes)
image = Image.open(filePathName)
image_np = load_image_into_numpy_array(image)
output_dict = run_inference_for_single_image(image_np, detection_graph)
context={'filePathName':filePathName}
#Inference
run_inference_for_single_image(image_np,detection_graph)
#Bounding boxes ands save image
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=1)
image.save("modif_pic.jpg")
return render(request,'analyzis.html', context)
def predictImage2(request):
fileObj=request.FILES['filePath']
fs=FileSystemStorage()
filePathName=fs.save(fileObj.name,fileObj)
filePathName=fs.url(filePathName)
context={'filePathName':filePathName}
return render(request,'analyzis.html', context)
The view predict2 works. The view predictimage does not work. When I try to use this view in the same way than the other one (by submitting the uploaded image), I have this problem: This site can’t be reached
127.0.0.1 refused to connect.
I think it may be due to thetime it takes to load my graph model (about 50mo). Do you know if it is possible to change this time? Or do you know another thing that could prevent the server from loading the model ?
Thanks a lot !